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We consider a discrete model that describes a linear chain of particles coupled to a single-site defect with
instantaneous Kerr nonlinearity. We show that this model can be regarded as a nonlinear generalization of the
familiar Fano-Anderson model and it can generate amplitude-dependent bistable resonant transmission or
reflection. We identify these effects as the nonlinear Fano resonance and study its properties for continuous
waves and pulses.
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I. INTRODUCTION to a hopping probability. This simple model allows one to

The Fano resonance is widelv known across man diﬁer_describe the basic physics of the Fano resonance in a simple
ent branches of physics: it man%ests itself as a shary asynivay- In particular, this model allows some analytical studies

: ) pnysics, 1t o P asyMeat may serve as a guideline for the analysis of more com-
metric profile of transmission or absorption lines, and it is

observed in numerous physical systems, including light abplicated physical models that predict the Fano resonance ef-

sorption by atomic systeni&], Aharonov-Bohm interferom- fect.

. In this paper we consider an important generalization of
gters[2,3], and quantum A resonant light propaga- the Fano-Anderson model under the assumption that a
tion through photonic-crystal waveguideg7—12], and

: . S . ._.single-site defect is nonlinear. We show that this model al-
phonon scattering by time-periodic scattering potential

[13-15. From the viewpoint of the fundamental physics theﬁows one to describe monlinear Fano resonancend it can
Fano résonance ma 21 ear in svstems chargcga rizea b yggnerate extremely high contrast between the bistable states
LY Y app Sy . . in'its transmission with low input power. We study resonant

certain discrete energy state that interacts with the continuum

spectrum throuah aimterference effectUsually. the discrete nonlinear transmission and the properties of the nonlinear
pectr 9 Y, ; Fano resonance for continuous waves and pulses. We would
state is created by a defect that allows ¢oesevergl addi-

tional propagation paths in the wave scattering which inter-"ke to mention that a typical physical situation when this
propag: P . 9 whi .~ model can be employed directly for describing resonant ef-
act constructively or destructively. In the transmission line

o ; o 'fects is light transmission in waveguides and waveguide
this interference effect leads to eitharfect transmissioor . . . . . . .
perfect reflectionproducing a sharp asymmetric profile. junctions created in two-dimensional photonic crystals with

In a classical paper, Fari@] derived the general formula e_mbedded higiQ resonators{c_iefects or cavitigswith non-
which describes asymr,netric line shape of the transmission Alrnear response. In Fhe nonlinear regime, a defec_t supports
absorption lines: one (or seyera)l localized states tha'g are characterlzed py a

: discrete eigenvalue. When the excited localized state inter-
(e+f)2 acts with the photonic-crystal waveguide, the system can dis-
2+1° (1) play interference effects and Fano resonance.

The aim of this paper is twofold. First, we study both

wheree=(E—-Eg)/(I'/2) is the dimensionless energy in units linear and nonlinear transmission in discrete Fano-Anderson
of the resonance widtl", f is the asymmetry parameter models and obtain a number of explicit analytical results

(Fano factoy, and Eg is the resonance energy. In the limit

Fle) =

f—o0, this formula can also describe the so-called Breit- o5 6, o, 6, o, 0, O,
Wigner resonance profil@]. This quite universal formula is
used usually to fit a particular profile observed in experi- . ’ ‘ . ’ . .

ments and, therefore, to provide proof that the observed phe-
nomenon can be classified as the Fano resonance.

One of the simplest models that can describe the resonant .
coupling and interaction between a discrete state and con- d
tinuum spectrum is the so-called Fano-Anderson motig
(see a sketch in Fig.)11t describes a linear “atomic” chain  FiG. 1. (Color online Schematic of the Fano-Anderson model.
with the nearest-neighbor interaction forces and interactinghe array of blue circles corresponds to a linear chain, and the
with a defect state through the nearest neighbors. In applicasolated red circle is a defect which can be either linear or nonlinear.
tion to tight-binding models in solids, these forces are linkedArrows indicate the coupling between different states.
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which allow one to get a deeper understanding of the physics The model(4) is the main subject of our analysis of
of this phenomenon. Second, we analyze in detail the effectationary-wave scattering. In the following two sections, we
of nonlinearity on the Fano resonance and demonstrate thattudy first the regime of a local coupling when only one
first, it leads to a shift of the Fano resonance frequency and;oupling coefficientV, is nonzero and after that consider a
second, it can lead to bistability in the wave transmission. nonlocal coupling with up to three nonzero coupling coeffi-
The paper is organized as follows. In Sec. Il we describeientsV_, o .. In both these cases, we start our analysis from
our discrete nonlinear model which provides a generalizatiothe linear regime and then analyze the Fano scattering in the
of the Fano-Anderson model. In Sec. lll, we describe thenonlinear regime when # 0. A full time-dependent model
main features of the Fano resonance for the case of a locé®) is discussed in Sec. V of the paper when we consider
coupling and then study the effect of nonlinearity of the de-wave packet scattering.
fect on the resonant transmission. In particular, we define the
conditions for the bistable transmission and show that the
nonlinear Fano resonance can exist in a broad frequency
range. Section IV is devoted to the study of a model with  First, we analyze the case of a local coupling whén

nonlocal coupling in both the linear and nonlinear regimes=0 for j+0 andV, is nonzero and study separately the
In Sec. V we consider wave packet scattering. Section Vlinear (\=0) and nonlineaf\ # 0) regimes.

concludes the paper.

Ill. LOCAL COUPLING

1. MODEL A. Linear scattering

One of the simplest models which describes the physics We consider the scattering of plane waves with dispersion
and main features of the Fano resonance is the so-called,=2C cosq propagating along the linear chain. Using the
Fano-Anderson modé¢lL6]. In this paper, we use a modified second equation of the syste@), we find a simple link
version of this model described by the Hamiltoniésee between two defect-site characteristics,

Fig. D Voo

x « B= , 5
H=2> Cndyq+Egld2+\|d|*+d Evj¢j+c.c., w-Ey ®)
n j
. ) . ) and obtain a single equation
where the asterisk denotes complex conjugation. This model )
describes the interaction of two subsystems. One subsystem _ VoAo
consists of a straighinear chains with complex field ampli- AR = C(Aq1+ Ane) + w—E, Onos (6)

tude ¢, at siten which are coupled by nearest-neighbor cou- ) . ) )
pling C; this is the system characterized by the frequencyVith @ one-site scattering potential. For the scattering prob-
band of the continuum spectrum. The second subsystem col@M. we consider the boundary conditions

sists of an additional discrete statavith local energy value el 4 re i h <0
Eg. For the nonlinear model, we assume that the defect pos- Av=Y an ’ ’ (7)
sesses a cubic nonlinear responsdeing the nonlinear pa- tel, n>0,

rameter. The interaction between these two subsystems \'ﬁherel, r, andt have the meaning of the incoming, reflected,

described by the coupling coefficientg. and transmitted wave amplitudes far from the defect site.
From the lattice Hamiltonian, we derive a system of\wjthout loss of generality, we will assume that the incoming
coupled nonlinear dynamic equations amplitudel is real. According to Eq(6), the strength of the
o scattering potential depends on the incoming frequen
b= Clbns + dsd) + A2 V; iy, 9P P g rediency
j

and the system should demonstnagsonant scatteringf the
frequency of the defect is placed in the propagation fre-
quency band of the chain—i.¢Ey| < 2C—the scattering po-
tential in Eq.(6) becomes infinitely large ab= wz=Eg, and
this will lead to total reflection of the incoming wave.

where the overdot stands for the derivative in time. For fur- Using the well-known transfer-matrix approach, we ob-
ther analysis, we look for stationary solutions of this systemtain the analytical result for the transmission coefficient de-

id = Eqd+\|d?d+ X V¢, )
j

in the form fined asT=|t|?/1%
Go(1) =A™, d(7)=Be, 3) 2
| A . T=—L, (8)
which allow us to describelastic scattering processes by ag+1

means of a system of nonlinear algebraic equations . .
y g q where aq=cq(wq—Ed)/V(2) andc,=2Csing. This result cor-

wA,=C(Ar_1+ Ay +BX Vi, responds to a simple physics: For the resonant frequepcy
j there exist two scattering channels, with and without the de-
fect state excited, andestructive interferencéetween the
wB= EdB+)\|B|ZB+E VIA,. (4)  waves passing these channels leads to a complete suppres-
i sion of the wave transmissiofsee Fig. 2. As a matter of
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FIG. 2. (Color online Transmission coefficien{8) calculated FIG. 3. Frequency spectrum of the systé vs the coupling
for the linear Fano-Anderson mod@) in the casé€Ey=0,C=1,and  parametel, for the caseC=1, E4=0, and\=0.
\=0, for several values of the coupling coeffician

In general, the frequency of the localized stateof the
fact, the result(8) corresponds to the Fano formul(d), one-site potential is given by the expressioﬁ:4C2+§2,
wherea, plays a role of the dimensionless enerBy,is the  where¢ is the strength of the potential, and in our case,
resonant energy eigenvalue, and the resonance width is de-

: V3
fined as w?=4Ct+ —2—. (11
V2 (0~ Eg)
=—0 (9) Formally, this is the fourth-order equation i, but for E4
Csinge inside the spectruna,, there exist only two real solutions

where g- is a wave number at the resonaneg;=w(qgg). which correspond to two bound states.

According to this result, the width is proportional to the cou-
pling strengthV, and it depends on the position of the Fano B. Nonlinear scattering and bistability
resonance with respect to the boundary of the speciirh

In this case, the asymmetry paramefevanishes, and the Now we assume that the isolated defect is nonlinear—i.e.,
transmission profile is symmetric. N#0. Using Egs.(4) and the continuity condition at the

Transmission vanishes whem,=0; this happens at the defect _site_,l +r=t, we obtain the general expression for the
edges of the continuous spectrum bagd0 andq=, due  transmission coefficient,
to the vanishing of group velocities, and at the resonant fre- N
quencywg Which, in the case of a local coupling, coincides =
with the discrete eigenvalue of the defect moade=E,. If x+1
the defect is coupled to two or more sites, the resonant frewherex is a real solution of the cubic equation
quency is renormalized, as discussed below. We notice that 5
when the resonant frequency is in the middle of the propa- (x=+ D)X= ag) = 74=0, (13
gation b_and, the transmission prof!Ie is symme(see Fig. with the paramete%:)\cglzlvﬁ,.
2), and in the case of a local coupl_mg the Fano resonance is The transmission coefficient defined by H42) corre-
observed as the resonance reflection. sponds again to the general Fano form(a During our
Using thatiA|>=TI? and the relatior5), we can calculate  yerivation, we puk=tan, whereg is a phase of the reflec-
analytica_llly the amplitude of the defect state, which riches;, amplituder =|r | . Due to the local range of the scatter-
the maximum ing potential(6), it can be showri19] that the phase of the
reflection amplitude is equal té=5(q) +7/2, whered(q) is
a scattering phase shift. Therefore, we can conside(E3).
at the Fano resonance frequenay. as a nonlinear equation for the scattering phase shift, with

When the coupling coefficient between the defect and<=~C0té(d). Note here that Eq(13) may support complex
chain vanishesy,=0, linear modes of the systefd) are _solutlops for scgttenng phase shlfts,_wh[ch will correspond to
described by the continuous spectrusg=2C cosd, while mela_stlcscattermg[lQ]..Such_a situation is beyond the scope
the defect with frequencyw=E, is uncoupled. For a finite ©f this paper. Expressiofi2) is valid only for real solutions
coupling V,#0, the defect generates two local modes of Eq. (13)3 w_h|ch corres_,pond to elastic scattering process.
bound stateswith the frequencies bifurcating from the upper ~ Transmission(12) vanishes ak=0 whenaq=-yy
and lower edges of the continuous spectriu,|=2C, as 2= _ 20402 _ 2\ —
shown in Fig. 3. The appearance of these local modes does Vo(Bq— wg) +AIH(4CT - ) =0 (14
not show any characteristic feature in transmission close tor c,=0.
the band edges. For the casg=0, these states are located =~ When y,=0, there exists only one real solution of Eq.
symmetrically, because the defect frequency is at the middI€L3), x=ay, it leads to the resul8) obtained above. In the
of the spectrumuy, nonlinear regimegy,# 0), there exist up to three real solu-

(12

|Bmad? = 1221 (10)
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FIG. 4. (Color onling Parameter planéw, y,) defined by dif-
ferent solutions of Eq(13). Solid areas correspond to bistability; a
straight dashed line at the boundary of the bistability region corre-
sponds to the Fano resonance.
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o
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tions, the output may become a multivalued function of the
input, and this may lead tbistability of the wave transmis- -
sion[20]. 02

To define the regions where such a bistability transmis-

Transmission
o g
»

|
1L

sion can occur, we present the left-hand side of @8) in 0 05
the form F(x)=f(x) -, so that the bistability regions are
determined by local extrema of the functidiix). When FIG. 5. (Color onling Dependence of the transmission coeffi-

larg| < V3 there are no local extrema, and for any valueypf cient on(a) the wave frequencyy for a fixed intensityl and (b)

(and alson or 1) there exists only one real solution of Eq. input intensityl for a fixed frequency, for C=A=1, V,=0.8, and

(13) and therefore the transmission is always single valuedgq=0. Bistability regions(|aq| > 3) are denoted by dashed lines.
For|aq|> V3, a pair of minimum and maximum points of the

function f(x) appear atXminmax=(aq* \r’a§—3)/3, respec- pears. Because both, andy, depend on the frequenay,, a
tively, and the bistability region is determined by the condi-change of the frequency corresponds to a move in the param-
tion eter space(ay, vy). For Eg=0, a4 changes in the interval

_ max, ma; ,Where
F(Xmin) < ¥g < FXmad (15 L% ]

filled on the parameter plar(ey, v,) in Fig. 4. ag‘axz 2C%V3 (17)

In the nonlinear regime, the transmission coefficient de-
pends on two parameters: the wave frequeagyand input  anq pistability is expected fag™> |3 [see Fig. ).
intensity I. First, we study the dependence of the transmis- To study the dependence of the transmission coefficient

sion coefficient on the wave frequency. From the secongn the input intensity, we solve Eq(14) and obtain
equation of Eqs(4), we can see that nonlinearity shifts the

frequency of the localized mode and, therefore, shifts the

_ 2
position of the Fano resonance. By denoting the left-hand |2:%2E—d)v2°_ (18)
side of the Eq(14) asg(wy), it follows thatg(w,) is a qua- A(4C" - wp)

dratic function ofw,. If we put E4=0, theng(-2C)g(2C)
<0 and, therefore, there is a unique solutiorgab,) inside  Equation(18) indicates that, depending on the sign of non-
the interval[-2C,2C]. In the limit of large intensity—i.e., linearity A, the Fano resonance appears for any frequency
for | —»—the solutions of the equatiog(w,)=0 approach from the interval[-2C,Eq] or [Eq,2C], and the frequency
the values +Z. Thus, forany valueof the input intensity ~ should satisfy the condition
there always exists a single Fano resondisee Fig. £a)].

To define the position of the Fano resonance analytically, (Eg= wgA < 0. (19

we solve Eq(14) explicitly with respect to the frequenay,: On the plane of parametefe,. v.), only v, depends on
qr 7q7 q

V2 + \x’vg + 4M2(V(2)Ed + 4N12C?) the input intensityt, so that varying we move along the line
- 2\ |2 . ( ag=const andy, <0 or y,>0 (depending on the sign of the
nonlinearity parametex). In order to achieve bistability, we
A proper sign in Eq(16) should be chosen depending on the should satisfy the conditiorje,|> 3 andagy,<0. The lat-
particular values of the parameters. ter condition can be reduced to the inequalifyy—wy)\
Thus, by increasing the input intensity, we shift the posi-<0, which defines the existence of the Fano resonath@e
tion of Fano resonance such that for |, the transmission In other words, bistability appears only simultaneously with
coefficient becomes multivalued and a bistability region apthe presence of Fano resonance; see Fids.dnd 4.

W =

036626-4
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IV. NONLOCAL COUPLING V7= . .

As a matter of fact, the local coupling discussed above
provides a relatively simple approach for the derivation of
analytical formulas and understanding the major physics of
the Fano resonance. However, very often the physical prob-
lems where the Fano resonance is observed are more com-
plicated. In particular, one of the major properties of realistic
physical models such as photonic-crystal waveguides
coupled to localized defect modes is long-range interaction
and nonlocal coupling18]. Below, we study the generalized
discrete(linear and nonlinearFano-Anderson model where
the defect is coupled to three nearest neighbors of the FIG. 6. (Color onling Transmission coefficieri vs frequency
chain—i.e., in Eq(2), VJ- #0 forj=-1,0,1. wq for the three-site interaction, for different values 8f=V_;.

Other parameters ar€=1, V=3, and E4=0. According to Eq.
(25), perfect transmission starts to occur inside the spectrum for
A. Linear scattering V,;>1.5. There is an interval for coupling coefficien, when there

In order to find the transmission coefficient for a nonlocal'S "° Perfect reflection inside the spectrum. For larger valués of
model, we modify the boundary conditions, Ha): both perfect transmission and perfect reflection move to the middle

of the spectrumog=0.
e+ e n< -1,
(20)

tglan, n>1. perfect reflection w|r— is shifted, the point of the perfect
transmission remains unchanged. This property allows us to

In addition, we should solve a set of coupled equations fox;,ary the width of the asymmetric Fano resonance by chang-
the sitesn=-1,0, 1with the boundary condition&0) with ing the energyE,.

respect to the reflection coefficieRt=|r|?/12:

e
)

e
=N
/

I

Transmission
<3
=
1

=3
N
T
1

e

n=

Formally, there exist two solutions for perfect transmis-

[Re(by) ]2 sion. But in real systems, such as waveguides in photonic
= > f 5 (21 crystals, some symmetries of the coupling coefficients
[Re(bg) 1"+ [cq(wq — Eg) + Im(bg)] hold—i.e., V,=V_; or V_;=V, and V;=0—in the cases of

where bq=V§1+V§+Vf+ZeZqu_1V1+2€quo(V_1+V1)- The three and two nonzero coupling terms, correspondingly. For
transmission coefficierit can be found from the identity ~ the first case/;=V_;, we obtain
+R=1.
o - . 1= —C(Vy/V 24

In the nonlocal case, the transmission coefficient displays olr=s (Vo/Va) (24)
more complex behavior as compared with the case of a onend therefore only one solution for perfect transmission is
site coupling(see Sec. Il above In particular, in this case possible. For small values &, there is no perfect transmis-
the Fano resonance is asymmetric. Perfect reflection occusion, and it takes place at the boundary of the spectrum

when the second term in the denominator of E2{) van- w|r-1=—2C, when

ishes. The corresponding condition can be rewritten in the o1

form V1=V = Vo2, (25
Cl Clwg — Eg) + Vo(V_y + Vy) + 2 cosqV;V_4] =0, and it exists for any larger value &f;. WhenV;— o, the

o o frequency of the perfect transmission moves to the middle of
and it is satisfied at the spectrum band edge® andq the spectrum, w|r—;— 0 (see Fig. 6.

=, due to zero group velocities and also when In the nonlocal model, the linear spectrum varies substan-
tially as a function of the coupling coefficient; see Fig. 7.
C%Ey— CVy(V_1 +V . ; .
ol=0= dCZ \O/(V 1+ Vo) , (22)  For small values o¥/,, two localized states exist outside the
ViV

linear spectrum bandy (cf. Fig. 3. The frequency of the
Equation(22) shows that, in the case of nonlocal coupling UPPer localized state goes away from the spectrum forall

to a defect state, the position of the perfect reflection getd he lower localized state approaches the spectrum band but

shifted. If the coupling is strong enough, the resonance cai!en deviates again for largsf;.

move outside the spectrum band. Levinson’s theorenh21] allows us to connect some prop-
In addition, there exists the frequency when a perfecprties of the linear spectruitiig. 7) with the transmission
transmission occurs. This happens wherftRe=0 or coefficient(Fig. 6). According to this theorem the scattering
phase shift at one of the band edges can be represented as
N2 2
- + + - -
2 — VO(Vl V—l) N (VO 4V1V—1)(Vl V—l) , C%q - O) - ’7T(Nb + |/2)’ (26)
Clr=1 2ViV_g

23 whereN, is a number of bound states of the system hisl
a number of quasibound states at the band edge. Using the
and the corresponding frequency|-, does not depend on relation between transmission coefficient and scattering
the discrete state ener@y. This means when the position of phase shiff19,21, it can be shown that(q=0)=0 for even
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FIG. 7. Frequency spectrum for the nonlocal model vs coupling  FIG. 9. Frequency spectrum for the nonlocal model with two
coefficientV, for the same values of parameters as in Fig. 6. Thenonzero coupling term¥,=V_; vs the coupling coefficienV for
inset shows a zoomed-in area with the double degeneracy of thge same parameters as in Fig. 8. The inset shows a localized state
energy levels near the critical valug, ™. at w=-2, which does not interact with other modes. The second
bound state appears vg:vlfo when the perfect reflection splits

andT(q=0)=1 for odd values of. Therefore, we can expect Off the spectrum band.

that some quasibound states should appear at the band edge,
when condition(25) is satisfied. The inset in Fig. 7 shows band edgew=-2C (see Fig. 9. In addition to this, atV,

that exactly for this value of the coupling parametgr the :VIr:O another quasibound state appears at the band edge of
spectrum band edge becomes doubly degenerate. In this sitiire spectrum. In such a situation there are two quasibound
ationl=1. stateqI =2) and according to Levinson’s theord@6) trans-

For the second cas¥,=V_; and V,;=0, we obtain the mission coefficient vanishes at the bottom band edge. For
result larger values of coupliny, a second bound state exists in

the system.
w0}y = - 2C, 27) y

so that the position of perfect transmission does not depend B. Nonlinear scattering

on the coupling coefficients and it should take place at the . . . -
: ; .. In the nonlinear regime, the reflection coefficient can be
boundary of the spectrum band. According to Levinson S . .
. . und in the analytical form

theorem, this may correspond only when some quaS|bounc(1)
state existexactlyat the band edgeé=1 in Eq.(26). [Re(aé) + Im(aé)x]z

Figure 8 predicts the perfect transmissionugt-2C for R= [Reb) P(L+xD) (29)
all values ofV,, except the value 4

wherex is a solution of the cubic equation

N2elys = (¢ + D[Relby) I|ag *Re(bg)z, + €qy,] = 0,
when the perfect reflectiof22) splits off the spectrum band ax 2% @ S 30
(see Fig. 8 In this case, for any nonzero value \d§ there (30
exists an upper localized state and the quasibound state at tiigere y, = Re(aé)+ Im(aﬁ)x, zX:Re(aé)x—lm(aé), ag=V_1

+e9(Vo+€Vy), e;=|ag|q (wq—Eg)Cq+Im(by)], and the sym-

Vo=V 0= VC(E4+2), (29)

1

bols Re and Im stand for the real and imaginary parts, re-
spectively.
=°'8 We would like to mention again that the general result for
S the reflection coefficient29) is similar to the Fano formula
206 . . .
gl (1), wherex can be understood as the effective dimensionless
04 energye and the ratio Reg)/Im(ag) is related to the asym-
= metry parametef. This formula(29) includes all other cases
02 . 3 discussed above. The condition for the perfect transmission
i 3 ] Reb)=0 coincides with the resu(23), so that the frequency
Y | E— of the perfect transmission does not depend on the input

intensity I, nonlinearity parametex, and the energy of the
FIG. 8. (Color onling Transmission coefficieri vs frequency ~ diScrete staté. The position of the perfect reflection does
wq for the nonlocal model with two nonzero couplings for different depend on all these parameters, and this gives us with a
values of couplingVp=V_,. Other parameters a@=1 andE,=0.  POssibility to vary the width of the asymmetric resonance in
Perfect transmission occurs@g=-2. WhenVo=V_:°=\2, the per-  the nonlocal nonlinear regime.
fect reflection state splits off the spectrum band and transmission at Finally, in Fig. 10 we plot the dependence of the trans-
w=-2 vanishes. Note here that for the given parametéis=0) mission coefficient versus input intensityfor different val-
=1/2 for anyvalue of the coupling/q. ues of the frequency. These results are similar to those ob-

036626-6



NONLINEAR FANO RESONANCE AND BISTABLE WAVE.. PHYSICAL REVIEW E 71, 036626(2005

o
%
o
%

o
=

o
=N

I

T,
s

N
'S

Transmission
[
'S

Transmission

107
010 20 30 40 50 60
o

0.2 0.2

FIG. 10. (Color on]ine) Transmission coefficient vs intensity FIG. 11. (Color online Transmission coefficient of the wave

for the nonlocal nonlinear model for_;=Vo=V;=1,A=1, C=1, et in the linear regime=0 for different values of the widtr.

and E4=0. Perfect reflection occurs at the edge of the bls'[abllltyOth(_}r parameters a@=1,V=0.5, andE4=0. For given parameters

domain(see Fig. 4. Dashed lines correspond to bistable regions. the spectral width of the wave packet becomes smaller than the
width of the resonanc&€=1/4 for ¢>20. It leads to good agree-

tained for the model with a local coupling, presented in Fig.ment with the analytical resulfinsed Transmission at the position

5(b). of the Fano resonancg: decays exponentially with the spatial
width o.

V. WAVE PACKET SCATTERING input wave packet amplitud, defined in Eq.(31) for dif-
The previous sections are devoted to the problem of time'ierent values of the carrier wave number. For the agge

independent plane-wave scattering. In order to verify how™JF Fig. 12 indicates the existence of the Fano resonance

these results can be used for describing realistic wave sc _h_aracterizec_j by the resonant deep in th_e transmissiqn coef-

tering, we should analyze the time-dependent scattering ]LC|_ent and simultaneous resonant peak in th_e reflection co-

wave packets. In this section, we study this problem numeri?ff'c'em‘ V_Vhenqw>qF, no I_:an_o resonance exists. These re-

cally in the framework of the time-dependent mo). sults prowde_ a good qualitative agreement with the plane-
We consider the propagation of a Gaussian wave packé{yave analysis presented above.

through a discrete chain with the defect described by the In adtﬂltlon to thl')S feattére assoma_ted vyltrllz'thelgwgﬂrrneso-
system of equation§2) in the regime of a local coupling, hance, there are observed some regions In Fig.

when Vo=V and V,.,=0. As the input wave, we take a trar)smission and reflection _coefficients decr_ease—i.e., v_vhen
Gaussian wave packet of the form their sum does not equal umty. Usually, the d|_screte localized
mode becomes excited during the interaction of a wave
(n=ng)? ] packet with the defect, and then it relaxes to the ground state.
#n(0) =1y exp| = T2 exd-igun—ngl, (81  For these particular values of the wave packet amplitygle
both the defect-site and zero-site particles of the chain get
whereq, is the carrier wave number of the wave packgt, highly excited with long-lived oscillations after the interac-
is its maximum amplitudey is the spatial width, and, is  tion (see Fig. 18 Such a behavior is very similar to the
the initial position. The wave numbey, determines the ve- scattering by a potential with an excited sta{d9] and it
locity of the wave packet. corresponds to thanelastic scattering process. In our situa-
For calculating the transmission and reflection coeffi-tion the localized state is excited due to the nonlinear inter-
cients, we use the conservation of the norm and define thection.
coefficients as follows:

En>0 |¢n(7'*)|2 2n<0 |¢n(7*)|2 2 1r T+R hine :}7 U
= , R=e————, (32 < 4 |
S, 160 S, |40 o \\ /
(=
N . . i 0.6 [— q,=057 Highly excite 1
where 7 corresponds to some time after interaction of the i =sfiom Fanoresonance i 0
wave packet with a defect. Eoal —"
In our simulations, we takEy=0 and thereforgg= /2. §
First, we compare numerical results for wave packet scatter- 2 0'2"'1;"
ing with plane-wave analysis in the linear regirtgee Fig. oL ==

11). When the spectral width of the wave packet/zr is
smaller than the width of the resonant®, we have ob-
served good agreement. FIG. 12. (Color onling Reflection coefficient and the sum of the

In the nonlinear regime, our numerical results for wavetransmission and reflections coefficients vs the input amplityde
packet scattering are summarized in Fig. 12 for the deperof the wave packet defined in E¢B1) for C=1, V=0.5,E4=0, \
dence of the transmission and reflection coefficients on the1, o=4, andny=-10.
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2 ' ' ' ' effect. We have studied, both analytically and numerically,

' ] the main features of the resonant transmission for continuous
L5 R waves and pulses, and we have shown that the Fano reso-
] nance is observed as a specific feature in the transmission
= il = i coefficient as a function of frequency and/or intensity. In

| — 1oz i . particular, the presence of nonlinearity makes the resonance

] more robust and it can broaden substantially the parameter

0sr \ | region where the resonant transmission is observed, by ad-
I =gl justing either the wave frequency or the intensity to satisfy

030 40 & 80 100 120 140 the resonant conditions. Moreover, we have found the con-
T ditions when the Fano resonance is associated with the

FIG. 13. (Color onling Evolution of the defect site during and bistable transr_nission. .
after wave packet scattering, far=0.57. Other parameters are the Ve would like to emphasize that many of the effects de-

same as in Fig. 12. Different final states of the defect are observe&Cribed in this paper can find applications in a variety of
for a slight variation of the amplitude of the incoming wave packet, different nonlinear physical systems, including the transmis-
being a signature of the system bistability. The inset shows a logsion of straight and curved waveguides coupled to localized
plot of this dependence and indicates that the defect state relaxes @gfect modes in photonic crystd,9,18, plasmariton reso-
the ground state algebraically. nance in the nonlinear opticksee Fig. 12 in Ref[22)).
Moreover, a number of interesting effects already observed

For the wave numbeg,,=0.57 such a situation even hap- in some of the nonlinear systems can be identified as the

pens near the Fano resonance: i.e., by varying the ampmud*ganifestation of the nonlinear Fano resonances. In particular,

of the wave packet we can observe different outcomes for th&¥/e believe that the resent observation of excitonic optical
dynamics of the discrete stateee Fig. 13 bistability in CyO [23] can be explained in terms of the
nonlinear Fano resonance which could shed additional light

on the physics of these experimental observations.

Inld)

VI. CONCLUSIONS

We have studied the properties of wave transmission in ACKNOWLEDGMENTS
the presence of a localized nonlinear defect described by the This work has been supported by the Australian Research
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vides a simple generalization of the well-known problem ofGorbach for useful discussions. A part of this work has been
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