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We consider a discrete model that describes a linear chain of particles coupled to a single-site defect with
instantaneous Kerr nonlinearity. We show that this model can be regarded as a nonlinear generalization of the
familiar Fano-Anderson model and it can generate amplitude-dependent bistable resonant transmission or
reflection. We identify these effects as the nonlinear Fano resonance and study its properties for continuous
waves and pulses.
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I. INTRODUCTION

The Fano resonance is widely known across many differ-
ent branches of physics; it manifests itself as a sharp asym-
metric profile of transmission or absorption lines, and it is
observed in numerous physical systems, including light ab-
sorption by atomic systemsf1g, Aharonov-Bohm interferom-
etersf2,3g, and quantum dotsf4–6g, resonant light propaga-
tion through photonic-crystal waveguidesf7–12g, and
phonon scattering by time-periodic scattering potentials
f13–15g. From the viewpoint of the fundamental physics, the
Fano resonance may appear in systems characterized by a
certain discrete energy state that interacts with the continuum
spectrum through aninterference effect. Usually, the discrete
state is created by a defect that allows onesor severald addi-
tional propagation paths in the wave scattering which inter-
act constructively or destructively. In the transmission line,
this interference effect leads to eitherperfect transmissionor
perfect reflection, producing a sharp asymmetric profile.

In a classical paper, Fanof1g derived the general formula
which describes asymmetric line shape of the transmission or
absorption lines:

Fsed =
se + fd2

e2 + 1
, s1d

wheree=sE−ERd / sG /2d is the dimensionless energy in units
of the resonance widthG, f is the asymmetry parameter
sFano factord, and ER is the resonance energy. In the limit
f →`, this formula can also describe the so-called Breit-
Wigner resonance profilef2g. This quite universal formula is
used usually to fit a particular profile observed in experi-
ments and, therefore, to provide proof that the observed phe-
nomenon can be classified as the Fano resonance.

One of the simplest models that can describe the resonant
coupling and interaction between a discrete state and con-
tinuum spectrum is the so-called Fano-Anderson modelf16g
ssee a sketch in Fig. 1d. It describes a linear “atomic” chain
with the nearest-neighbor interaction forces and interacting
with a defect state through the nearest neighbors. In applica-
tion to tight-binding models in solids, these forces are linked

to a hopping probability. This simple model allows one to
describe the basic physics of the Fano resonance in a simple
way. In particular, this model allows some analytical studies
that may serve as a guideline for the analysis of more com-
plicated physical models that predict the Fano resonance ef-
fect.

In this paper we consider an important generalization of
the Fano-Anderson model under the assumption that a
single-site defect is nonlinear. We show that this model al-
lows one to describe anonlinear Fano resonance, and it can
generate extremely high contrast between the bistable states
in its transmission with low input power. We study resonant
nonlinear transmission and the properties of the nonlinear
Fano resonance for continuous waves and pulses. We would
like to mention that a typical physical situation when this
model can be employed directly for describing resonant ef-
fects is light transmission in waveguides and waveguide
junctions created in two-dimensional photonic crystals with
embedded high-Q resonatorssdefects or cavitiesd with non-
linear response. In the nonlinear regime, a defect supports
one sor severald localized states that are characterized by a
discrete eigenvalue. When the excited localized state inter-
acts with the photonic-crystal waveguide, the system can dis-
play interference effects and Fano resonance.

The aim of this paper is twofold. First, we study both
linear and nonlinear transmission in discrete Fano-Anderson
models and obtain a number of explicit analytical results

FIG. 1. sColor onlined Schematic of the Fano-Anderson model.
The array of blue circles corresponds to a linear chain, and the
isolated red circle is a defect which can be either linear or nonlinear.
Arrows indicate the coupling between different states.
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which allow one to get a deeper understanding of the physics
of this phenomenon. Second, we analyze in detail the effect
of nonlinearity on the Fano resonance and demonstrate that,
first, it leads to a shift of the Fano resonance frequency and,
second, it can lead to bistability in the wave transmission.

The paper is organized as follows. In Sec. II we describe
our discrete nonlinear model which provides a generalization
of the Fano-Anderson model. In Sec. III, we describe the
main features of the Fano resonance for the case of a local
coupling and then study the effect of nonlinearity of the de-
fect on the resonant transmission. In particular, we define the
conditions for the bistable transmission and show that the
nonlinear Fano resonance can exist in a broad frequency
range. Section IV is devoted to the study of a model with
nonlocal coupling in both the linear and nonlinear regimes.
In Sec. V we consider wave packet scattering. Section VI
concludes the paper.

II. MODEL

One of the simplest models which describes the physics
and main features of the Fano resonance is the so-called
Fano-Anderson modelf16g. In this paper, we use a modified
version of this model described by the Hamiltonianssee
Fig. 1d

H = o
n

Cfnfn−1
* + Edudu2 + ludu4 + d*o

j

Vjf j + c.c.,

where the asterisk denotes complex conjugation. This model
describes the interaction of two subsystems. One subsystem
consists of a straightlinear chains with complex field ampli-
tudefn at siten which are coupled by nearest-neighbor cou-
pling C; this is the system characterized by the frequency
band of the continuum spectrum. The second subsystem con-
sists of an additional discrete stated with local energy value
Ed. For the nonlinear model, we assume that the defect pos-
sesses a cubic nonlinear response,l being the nonlinear pa-
rameter. The interaction between these two subsystems is
described by the coupling coefficientsVj.

From the lattice Hamiltonian, we derive a system of
coupled nonlinear dynamic equations

iḟn = Csfn−1 + fn+1d + do
j

Vjdnj,

iḋ = Edd + ludu2d + o
j

Vjf j , s2d

where the overdot stands for the derivative in time. For fur-
ther analysis, we look for stationary solutions of this system
in the form

fnstd = Ane
−ivt, dstd = Be−ivt, s3d

which allow us to describeelastic scattering processes by
means of a system of nonlinear algebraic equations

vAn = CsAn−1 + An+1d + Bo
j

Vjdnj,

vB = EdB + luBu2B + o
j

VjAj . s4d

The model s4d is the main subject of our analysis of
stationary-wave scattering. In the following two sections, we
study first the regime of a local coupling when only one
coupling coefficientV0 is nonzero and after that consider a
nonlocal coupling with up to three nonzero coupling coeffi-
cientsV−1,0,1. In both these cases, we start our analysis from
the linear regime and then analyze the Fano scattering in the
nonlinear regime whenlÞ0. A full time-dependent model
s2d is discussed in Sec. V of the paper when we consider
wave packet scattering.

III. LOCAL COUPLING

First, we analyze the case of a local coupling whenVj
;0 for j Þ0 and V0 is nonzero and study separately the
linear sl=0d and nonlinearslÞ0d regimes.

A. Linear scattering

We consider the scattering of plane waves with dispersion
vq=2C cosq propagating along the linear chain. Using the
second equation of the systems4d, we find a simple link
between two defect-site characteristics,

B =
V0A0

v − Ed
, s5d

and obtain a single equation

vAn = CsAn−1 + An+1d +
V0

2A0

v − Ed
dn0, s6d

with a one-site scattering potential. For the scattering prob-
lem, we consider the boundary conditions

An = HIeiqn + re−iqn, n , 0,

teiqn, n . 0,
J s7d

whereI, r, andt have the meaning of the incoming, reflected,
and transmitted wave amplitudes far from the defect site.
Without loss of generality, we will assume that the incoming
amplitudeI is real. According to Eq.s6d, the strength of the
scattering potential depends on the incoming frequencyv,
and the system should demonstrateresonant scattering. If the
frequency of the defect is placed in the propagation fre-
quency band of the chain—i.e.,uEduø2C—the scattering po-
tential in Eq.s6d becomes infinitely large atv;vF=Ed, and
this will lead to total reflection of the incoming wave.

Using the well-known transfer-matrix approach, we ob-
tain the analytical result for the transmission coefficient de-
fined asT= utu2/ I2:

T =
aq

2

aq
2 + 1

, s8d

whereaq=cqsvq−Edd /V0
2 and cq=2C sinq. This result cor-

responds to a simple physics: For the resonant frequencyvF,
there exist two scattering channels, with and without the de-
fect state excited, anddestructive interferencebetween the
waves passing these channels leads to a complete suppres-
sion of the wave transmissionssee Fig. 2d. As a matter of
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fact, the results8d corresponds to the Fano formulas1d,
whereaq plays a role of the dimensionless energy,Ed is the
resonant energy eigenvalue, and the resonance width is de-
fined as

G =
V0

2

C sinqF
, s9d

where qF is a wave number at the resonance,vF=vsqFd.
According to this result, the width is proportional to the cou-
pling strengthV, and it depends on the position of the Fano
resonance with respect to the boundary of the spectrumf17g.
In this case, the asymmetry parameterf vanishes, and the
transmission profile is symmetric.

Transmission vanishes whenaq=0; this happens at the
edges of the continuous spectrum band,q=0 andq=p, due
to the vanishing of group velocities, and at the resonant fre-
quencyvF which, in the case of a local coupling, coincides
with the discrete eigenvalue of the defect mode,vF=Ed. If
the defect is coupled to two or more sites, the resonant fre-
quency is renormalized, as discussed below. We notice that
when the resonant frequency is in the middle of the propa-
gation band, the transmission profile is symmetricssee Fig.
2d, and in the case of a local coupling the Fano resonance is
observed as the resonance reflection.

Using thatuA0u2=TI2 and the relations5d, we can calculate
analytically the amplitude of the defect state, which riches
the maximum

uBmaxu2 = I2/2G s10d

at the Fano resonance frequencyvF.
When the coupling coefficient between the defect and

chain vanishes,V0=0, linear modes of the systems4d are
described by the continuous spectrumvq=2C cosq, while
the defect with frequencyv=Ed is uncoupled. For a finite
coupling V0Þ0, the defect generates two local modessor
bound statesd with the frequencies bifurcating from the upper
and lower edges of the continuous spectrum,uvLuù2C, as
shown in Fig. 3. The appearance of these local modes does
not show any characteristic feature in transmission close to
the band edges. For the caseEd=0, these states are located
symmetrically, because the defect frequency is at the middle
of the spectrumvq.

In general, the frequency of the localized statevL of the
one-site potential is given by the expressionvL

2=4C2+j2,
wherej is the strength of the potential, and in our case,

vL
2 = 4C2 +

V0
4

svL − Edd2 . s11d

Formally, this is the fourth-order equation invL, but for Ed
inside the spectrumvq, there exist only two real solutions
which correspond to two bound states.

B. Nonlinear scattering and bistability

Now we assume that the isolated defect is nonlinear—i.e.,
lÞ0. Using Eqs.s4d and the continuity condition at the
defect site,I +r = t, we obtain the general expression for the
transmission coefficient,

T =
x2

x2 + 1
, s12d

wherex is a real solution of the cubic equation

sx2 + 1dsx − aqd − gq = 0, s13d

with the parametergq=lcq
3I2/V0

4.
The transmission coefficient defined by Eq.s12d corre-

sponds again to the general Fano formulas1d. During our
derivation, we putx=tanu, whereu is a phase of the reflec-
tion amplituder = ur ueu. Due to the local range of the scatter-
ing potentials6d, it can be shownf19g that the phase of the
reflection amplitude is equal tou=dsqd+p /2, wheredsqd is
a scattering phase shift. Therefore, we can consider Eq.s13d
as a nonlinear equation for the scattering phase shift, with
x=−cotdsqd. Note here that Eq.s13d may support complex
solutions for scattering phase shifts, which will correspond to
inelasticscatteringf19g. Such a situation is beyond the scope
of this paper. Expressions12d is valid only for real solutions
of Eq. s13d, which correspond to elastic scattering process.

Transmissions12d vanishes atx=0 whenaq=−gq:

V0
2sEd − vqd + lI2s4C2 − vq

2d = 0 s14d

or cq=0.
When gq=0, there exists only one real solution of Eq.

s13d, x=aq; it leads to the results8d obtained above. In the
nonlinear regimesgqÞ0d, there exist up to three real solu-

FIG. 2. sColor onlined Transmission coefficients8d calculated
for the linear Fano-Anderson models2d in the caseEd=0, C=1, and
l=0, for several values of the coupling coefficientV0.

FIG. 3. Frequency spectrum of the systems4d vs the coupling
parameterV0 for the caseC=1, Ed=0, andl=0.
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tions, the output may become a multivalued function of the
input, and this may lead tobistability of the wave transmis-
sion f20g.

To define the regions where such a bistability transmis-
sion can occur, we present the left-hand side of Eq.s13d in
the form Fsxd= fsxd−gq, so that the bistability regions are
determined by local extrema of the functionfsxd. When
uaqu,Î3 there are no local extrema, and for any value ofgq
sand alsol or Id there exists only one real solution of Eq.
s13d and therefore the transmission is always single valued.
For uaqu.Î3, a pair of minimum and maximum points of the
function fsxd appear atxmin,max=saq±Îaq

2−3d /3, respec-
tively, and the bistability region is determined by the condi-
tion

fsxmind , gq , fsxmaxd, s15d

filled on the parameter planesaq,gqd in Fig. 4.
In the nonlinear regime, the transmission coefficient de-

pends on two parameters: the wave frequencyvq and input
intensity I. First, we study the dependence of the transmis-
sion coefficient on the wave frequency. From the second
equation of Eqs.s4d, we can see that nonlinearity shifts the
frequency of the localized mode and, therefore, shifts the
position of the Fano resonance. By denoting the left-hand
side of the Eq.s14d asgsvqd, it follows thatgsvqd is a qua-
dratic function ofvq. If we put Ed=0, thengs−2Cdgs2Cd
,0 and, therefore, there is a unique solution ofgsvqd inside
the intervalf−2C,2Cg. In the limit of large intensity—i.e.,
for I →`—the solutions of the equationgsvqd=0 approach
the values ±2C. Thus, forany valueof the input intensityI
there always exists a single Fano resonancefsee Fig. 5sadg.

To define the position of the Fano resonance analytically,
we solve Eq.s14d explicitly with respect to the frequencyvq:

vF = −
V0

2 ± ÎV0
4 + 4lI2sV0

2Ed + 4lI2C2d
2lI2 . s16d

A proper sign in Eq.s16d should be chosen depending on the
particular values of the parameters.

Thus, by increasing the input intensity, we shift the posi-
tion of Fano resonance such that forI . Icr, the transmission
coefficient becomes multivalued and a bistability region ap-

pears. Because bothaq andgq depend on the frequencyvq, a
change of the frequency corresponds to a move in the param-
eter spacesaq,gqd. For Ed=0, aq changes in the interval
f−aq

max,aq
maxg, where

aq
max= 2C2/V0

2 s17d

and bistability is expected foraq
max.Î3 fsee Fig. 5sadg.

To study the dependence of the transmission coefficient
on the input intensityI, we solve Eq.s14d and obtain

I2 =
svq − EddV0

2

ls4C2 − vq
2d

. s18d

Equations18d indicates that, depending on the sign of non-
linearity l, the Fano resonance appears for any frequency
from the intervalf−2C,Edg or fEd,2Cg, and the frequency
should satisfy the condition

sEd − vqdl , 0. s19d

On the plane of parameterssaq,gqd, only gq depends on
the input intensityI, so that varyingI we move along the line
aq=const andgq,0 or gq.0 sdepending on the sign of the
nonlinearity parameterld. In order to achieve bistability, we
should satisfy the conditionsuaqu.Î3 andaqgq,0. The lat-
ter condition can be reduced to the inequalitysEd−vqdl
,0, which defines the existence of the Fano resonances19d.
In other words, bistability appears only simultaneously with
the presence of Fano resonance; see Figs. 5sbd and 4.

FIG. 4. sColor onlined Parameter planesaq,gqd defined by dif-
ferent solutions of Eq.s13d. Solid areas correspond to bistability; a
straight dashed line at the boundary of the bistability region corre-
sponds to the Fano resonance.

FIG. 5. sColor onlined Dependence of the transmission coeffi-
cient onsad the wave frequencyvq for a fixed intensityI and sbd
input intensityI for a fixed frequencyv, for C=l=1, V0=0.8, and
Ed=0. Bistability regionssuaqu.Î3d are denoted by dashed lines.
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IV. NONLOCAL COUPLING

As a matter of fact, the local coupling discussed above
provides a relatively simple approach for the derivation of
analytical formulas and understanding the major physics of
the Fano resonance. However, very often the physical prob-
lems where the Fano resonance is observed are more com-
plicated. In particular, one of the major properties of realistic
physical models such as photonic-crystal waveguides
coupled to localized defect modes is long-range interaction
and nonlocal couplingf18g. Below, we study the generalized
discreteslinear and nonlineard Fano-Anderson model where
the defect is coupled to three nearest neighbors of the
chain—i.e., in Eq.s2d, Vj Þ0 for j =−1,0,1.

A. Linear scattering

In order to find the transmission coefficient for a nonlocal
model, we modify the boundary conditions, Eq.s7d:

An = HIeiqn + re−iqn, n , − 1,

teiqn, n . 1.
J s20d

In addition, we should solve a set of coupled equations for
the sitesn=−1,0,1with the boundary conditionss20d with
respect to the reflection coefficientR= ur u2/ I2:

R=
fResbqdg2

fResbqdg2 + fcqsvq − Edd + Imsbqdg2 , s21d

where bq=V−1
2 +V0

2+V1
2+2e2iqV−1V1+2eiqV0sV−1+V1d. The

transmission coefficientT can be found from the identityT
+R=1.

In the nonlocal case, the transmission coefficient displays
more complex behavior as compared with the case of a one-
site couplingssee Sec. III aboved. In particular, in this case
the Fano resonance is asymmetric. Perfect reflection occurs
when the second term in the denominator of Eq.s21d van-
ishes. The corresponding condition can be rewritten in the
form

cqfCsvq − Edd + V0sV−1 + V1d + 2 cosqV1V−1g = 0,

and it is satisfied at the spectrum band edgesq=0 and q
=p, due to zero group velocities and also when

uvuT=0 =
C2Ed − CV0sV−1 + V1d

C2 + V1V−1
. s22d

Equations22d shows that, in the case of nonlocal coupling
to a defect state, the position of the perfect reflection gets
shifted. If the coupling is strong enough, the resonance can
move outside the spectrum band.

In addition, there exists the frequency when a perfect
transmission occurs. This happens when Resbqd=0 or

Uv

C
U

T=1
=

− V0sV1 + V−1d ± ÎsV0
2 − 4V1V−1dsV1 − V−1d2

2V1V−1
,

s23d

and the corresponding frequencyuvuT=1 does not depend on
the discrete state energyEd. This means when the position of

perfect reflection uvuT=0 is shifted, the point of the perfect
transmission remains unchanged. This property allows us to
vary the width of the asymmetric Fano resonance by chang-
ing the energyEd.

Formally, there exist two solutions for perfect transmis-
sion. But in real systems, such as waveguides in photonic
crystals, some symmetries of the coupling coefficients
hold—i.e., V1=V−1 or V−1=V0 and V1=0—in the cases of
three and two nonzero coupling terms, correspondingly. For
the first caseV1=V−1, we obtain

uvuT=1 = − CsV0/V1d s24d

and therefore only one solution for perfect transmission is
possible. For small values ofV1, there is no perfect transmis-
sion, and it takes place at the boundary of the spectrum
uvuT=1=−2C, when

V1 = Vcr
T=1 ; V0/2, s25d

and it exists for any larger value ofV1. When V1→`, the
frequency of the perfect transmission moves to the middle of
the spectrum,uvuT=1→0 ssee Fig. 6d.

In the nonlocal model, the linear spectrum varies substan-
tially as a function of the coupling coefficientV1; see Fig. 7.
For small values ofV1, two localized states exist outside the
linear spectrum bandvq scf. Fig. 3d. The frequency of the
upper localized state goes away from the spectrum for allV1.
The lower localized state approaches the spectrum band but
then deviates again for largerV1.

Levinson’s theoremf21g allows us to connect some prop-
erties of the linear spectrumsFig. 7d with the transmission
coefficientsFig. 6d. According to this theorem the scattering
phase shift at one of the band edges can be represented as

dsq = 0d = psNb + l/2d, s26d

whereNb is a number of bound states of the system andl is
a number of quasibound states at the band edge. Using the
relation between transmission coefficient and scattering
phase shiftf19,21g, it can be shown thatTsq=0d=0 for even

FIG. 6. sColor onlined Transmission coefficientT vs frequency
vq for the three-site interaction, for different values ofV1=V−1.
Other parameters areC=1, V0=3, and Ed=0. According to Eq.
s25d, perfect transmission starts to occur inside the spectrum for
V1.1.5. There is an interval for coupling coefficientV1, when there
is no perfect reflection inside the spectrum. For larger values ofV1,
both perfect transmission and perfect reflection move to the middle
of the spectrumvq=0.
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andTsq=0d=1 for odd values ofl. Therefore, we can expect
that some quasibound states should appear at the band edge,
when conditions25d is satisfied. The inset in Fig. 7 shows
that exactly for this value of the coupling parameterV1, the
spectrum band edge becomes doubly degenerate. In this situ-
ation l =1.

For the second caseV0=V−1 and V1=0, we obtain the
result

uvuT=1 = − 2C, s27d

so that the position of perfect transmission does not depend
on the coupling coefficients and it should take place at the
boundary of the spectrum band. According to Levinson’s
theorem, this may correspond only when some quasibound
state existsexactlyat the band edge,l =1 in Eq. s26d.

Figure 8 predicts the perfect transmission atvq=−2C for
all values ofV0, except the value

V0 = Vcr
T=0 ; ÎCsEd + 2d, s28d

when the perfect reflections22d splits off the spectrum band
ssee Fig. 8d. In this case, for any nonzero value ofV0 there
exists an upper localized state and the quasibound state at the

band edgev=−2C ssee Fig. 9d. In addition to this, atV0
=Vcr

T=0 another quasibound state appears at the band edge of
the spectrum. In such a situation there are two quasibound
statessl =2d and according to Levinson’s theorems26d trans-
mission coefficient vanishes at the bottom band edge. For
larger values of couplingV0 a second bound state exists in
the system.

B. Nonlinear scattering

In the nonlinear regime, the reflection coefficient can be
found in the analytical form

R=
fResaq

2d + Imsaq
2dxg2

fResbqdg2s1 + x2d
, s29d

wherex is a solution of the cubic equation

lI2cq
3yx

3 − sx2 + 1dfResbqdg2fuaqu2Resbqdzx + eqyxg = 0,

s30d

where yx=Resaq
2d+Imsaq

2dx, zx=Resaq
2dx−Imsaq

2d, aq=V−1

+eiqsV0+eiqV1d, eq= uaqu2fsvq−Eddcq+Imsbqdg, and the sym-
bols Re and Im stand for the real and imaginary parts, re-
spectively.

We would like to mention again that the general result for
the reflection coefficients29d is similar to the Fano formula
s1d, wherex can be understood as the effective dimensionless
energye and the ratio Resaq

2d / Imsaq
2d is related to the asym-

metry parameterf. This formulas29d includes all other cases
discussed above. The condition for the perfect transmission
Resbd=0 coincides with the results23d, so that the frequency
of the perfect transmission does not depend on the input
intensity I, nonlinearity parameterl, and the energy of the
discrete stateEd. The position of the perfect reflection does
depend on all these parameters, and this gives us with a
possibility to vary the width of the asymmetric resonance in
the nonlocal nonlinear regime.

Finally, in Fig. 10 we plot the dependence of the trans-
mission coefficient versus input intensityI for different val-
ues of the frequency. These results are similar to those ob-

FIG. 7. Frequency spectrum for the nonlocal model vs coupling
coefficientV1 for the same values of parameters as in Fig. 6. The
inset shows a zoomed-in area with the double degeneracy of the
energy levels near the critical valueVcr

T=1.

FIG. 8. sColor onlined Transmission coefficientT vs frequency
vq for the nonlocal model with two nonzero couplings for different
values of couplingV0=V−1. Other parameters areC=1 andEd=0.
Perfect transmission occurs atv1=−2. WhenV0=Vcr

T=0=Î2, the per-
fect reflection state splits off the spectrum band and transmission at
v=−2 vanishes. Note here that for the given parametersTsv=0d
=1/2 for anyvalue of the couplingV0.

FIG. 9. Frequency spectrum for the nonlocal model with two
nonzero coupling termsV0=V−1 vs the coupling coefficientV for
the same parameters as in Fig. 8. The inset shows a localized state
at v=−2, which does not interact with other modes. The second
bound state appears atV0=Vcr

T=0 when the perfect reflection splits
off the spectrum band.
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tained for the model with a local coupling, presented in Fig.
5sbd.

V. WAVE PACKET SCATTERING

The previous sections are devoted to the problem of time-
independent plane-wave scattering. In order to verify how
these results can be used for describing realistic wave scat-
tering, we should analyze the time-dependent scattering of
wave packets. In this section, we study this problem numeri-
cally in the framework of the time-dependent models2d.

We consider the propagation of a Gaussian wave packet
through a discrete chain with the defect described by the
system of equationss2d in the regime of a local coupling,
when V0=V and VnÞ0=0. As the input wave, we take a
Gaussian wave packet of the form

fns0d = Iw expF−
sn − n0d2

s2 Gexpf− iqwsn − n0dg, s31d

whereqw is the carrier wave number of the wave packet,Iw
is its maximum amplitude,s is the spatial width, andn0 is
the initial position. The wave numberqw determines the ve-
locity of the wave packet.

For calculating the transmission and reflection coeffi-
cients, we use the conservation of the norm and define the
coefficients as follows:

T =
on.0

ufnst*du2

on
ufns0du2

, R=
on,0

ufnst*du2

on
ufns0du2

, s32d

wheret* corresponds to some time after interaction of the
wave packet with a defect.

In our simulations, we takeEd=0 and thereforeqF=p /2.
First, we compare numerical results for wave packet scatter-
ing with plane-wave analysis in the linear regimessee Fig.
11d. When the spectral width of the wave packet 2p /s is
smaller than the width of the resonances9d, we have ob-
served good agreement.

In the nonlinear regime, our numerical results for wave
packet scattering are summarized in Fig. 12 for the depen-
dence of the transmission and reflection coefficients on the

input wave packet amplitudeIw defined in Eq.s31d for dif-
ferent values of the carrier wave number. For the caseqw
,qF, Fig. 12 indicates the existence of the Fano resonance
characterized by the resonant deep in the transmission coef-
ficient and simultaneous resonant peak in the reflection co-
efficient. Whenqw.qF, no Fano resonance exists. These re-
sults provide a good qualitative agreement with the plane-
wave analysis presented above.

In addition to this feature associated with the Fano reso-
nance, there are observed some regions in Fig. 12 whenboth
transmission and reflection coefficients decrease—i.e., when
their sum does not equal unity. Usually, the discrete localized
mode becomes excited during the interaction of a wave
packet with the defect, and then it relaxes to the ground state.
For these particular values of the wave packet amplitudeIw,
both the defect-site and zero-site particles of the chain get
highly excited with long-lived oscillations after the interac-
tion ssee Fig. 13d. Such a behavior is very similar to the
scattering by ad potential with an excited statef19g and it
corresponds to theinelasticscattering process. In our situa-
tion the localized state is excited due to the nonlinear inter-
action.

FIG. 10. sColor onlined Transmission coefficient vs intensityI
for the nonlocal nonlinear model forV−1=V0=V1=1, l=1, C=1,
and Ed=0. Perfect reflection occurs at the edge of the bistability
domainssee Fig. 4d. Dashed lines correspond to bistable regions.

FIG. 11. sColor onlined Transmission coefficient of the wave
packet in the linear regimel=0 for different values of the widths.
Other parameters areC=1, V=0.5, andEd=0. For given parameters
the spectral width of the wave packet becomes smaller than the
width of the resonanceG=1/4 for s.20. It leads to good agree-
ment with the analytical result.sInsetd Transmission at the position
of the Fano resonanceqF decays exponentially with the spatial
width s.

FIG. 12. sColor onlined Reflection coefficient and the sum of the
transmission and reflections coefficients vs the input amplitudeIw

of the wave packet defined in Eq.s31d for C=1, V=0.5, Ed=0, l
=1, s=4, andn0=−10.
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For the wave numberqw=0.57 such a situation even hap-
pens near the Fano resonance; i.e., by varying the amplitude
of the wave packet we can observe different outcomes for the
dynamics of the discrete statessee Fig. 13d.

VI. CONCLUSIONS

We have studied the properties of wave transmission in
the presence of a localized nonlinear defect described by the
generalized discrete Fano-Anderson model. This model pro-
vides a simple generalization of the well-known problem of
Fano resonances to the nonlinear case, and it can be em-
ployed to describe the so-called nonlinear Fano resonance

effect. We have studied, both analytically and numerically,
the main features of the resonant transmission for continuous
waves and pulses, and we have shown that the Fano reso-
nance is observed as a specific feature in the transmission
coefficient as a function of frequency and/or intensity. In
particular, the presence of nonlinearity makes the resonance
more robust and it can broaden substantially the parameter
region where the resonant transmission is observed, by ad-
justing either the wave frequency or the intensity to satisfy
the resonant conditions. Moreover, we have found the con-
ditions when the Fano resonance is associated with the
bistable transmission.

We would like to emphasize that many of the effects de-
scribed in this paper can find applications in a variety of
different nonlinear physical systems, including the transmis-
sion of straight and curved waveguides coupled to localized
defect modes in photonic crystalsf8,9,18g, plasmariton reso-
nance in the nonlinear opticsssee Fig. 12 in Ref.f22gd.
Moreover, a number of interesting effects already observed
in some of the nonlinear systems can be identified as the
manifestation of the nonlinear Fano resonances. In particular,
we believe that the resent observation of excitonic optical
bistability in Cu2O f23g can be explained in terms of the
nonlinear Fano resonance which could shed additional light
on the physics of these experimental observations.
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FIG. 13. sColor onlined Evolution of the defect site during and
after wave packet scattering, forqw=0.57. Other parameters are the
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being a signature of the system bistability. The inset shows a log-
plot of this dependence and indicates that the defect state relaxes to
the ground state algebraically.
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